
ORDO v1.0

Ratings for
hess and other games

∗

Miguel A. Balli
ora

†

Ordo is a program designed to
al
ulate ratings of individual
hess engines (or players). It

has a similar
on
ept than the Elo rating

a

, but with a di�erent model and algorithm. Ordo

keeps
onsisten
y among ratings be
ause it
al
ulates them
onsidering all results at on
e. In

that respe
t, it behaves similarly to BayesElo

b

. Ordo is distributed under the GPL li
ense

and binaries are available for GNU/Linux, Windows

®

, and OS X. In addition, the sour
es

are portable and
ould be easily
ompiled for other systems.

a

http://en.wikipedia.org/wiki/Elo_rating_system

b

http://remi.
oulom.free.fr/Bayesian-Elo/

Pre
ompiled Files

In this distribution, you may �nd versions for GNU/Linux (32 and 64 bits) or Windows

®

(64 and

32 bits). For
onvenien
e, you
an rename the proper �le for your system to ordo (GNU/Linux)

or ordo.exe (Windows

®

). As an input example, a publi
ly available �le games.pgn is in
luded

1

.

A bat
h �le (ordo_example.bat) is in
luded in the Windows

®

distribution

2

. It is a qui
k and

great start for users of that operating system.

GNU/Linux
ompilation and installation

After unzipping the
ontents, you
an type

make

make install

or in Ubuntu

sudo make install

Usage

The input should be a �le that adheres to the PGN standard

3

. Based on the results in that �le, Ordo

automati
ally
al
ulates a ranking . The output
an be a plain text �le and/or a
omma separated

∗
Copyright

©

2015 Miguel A. Balli
ora

†
e-mail: mballi
ora (at gmail dot
om)

1

Taken from the re
ently dis
ontinued Ingo Bauer's IPON rating list

2

Kindly prepared by Adam Hair

3

http://en.wikipedia.org/wiki/Portable_Game_Notation

1

value

4

(.
sv) �le. The .
sv �le is an interesting option be
ause it
an be opened/imported by

most spreadsheet programs. On
e imported, the user
an
hoose to format the output externally.

The simplest way to use Ordo is typing in the
ommand line:

ordo -p games.pgn

whi
h will take the results from games.pgn and output the text ranking on the s
reen. If you want

to save the results in a �le ratings.txt, you
an run:

ordo -p games.pgn -o ratings.txt

By default, the average rating of all the individuals is 2300. If you want a di�erent overall average,

you
an use the swit
h -a to set it. For instan
e to have and average of 2500, you
an do:

ordo -a 2500 -p games.pgn -o ratings.txt

or if you want the results in .
sv format, use the swit
h -
.

ordo -a 2500 -p games.pgn -
 rating.
sv

If you want both, you
an use:

ordo -a 2500 -p games.pgn -o ratings.txt -
 rating.
sv

An
hor

In addition, -A will �x the rating of a given player as a referen
e (an
hor) for the whole pool of

players.

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt

That will
al
ulate the ratings from games.pgn, save it in ratings.txt, and an
hor the engine

Deep Shredder 12 to a rating of 2800. Names that
ontain spa
es should be surrounded by quote

marks as in this example.

White advantage

The swit
h -w sets the rating advantage for having white pie
es in
hess. Alternatively, the (highly

re
ommended) swit
h -W lets Ordo
al
ulate it automati
ally. With this swit
h we
an
omplete

the above example:

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt -W

If the user knows that the white advantage is most likely a
ertain value that
ould vary within

a
ertain range, this un
ertainty
ould be given by the swit
h -u. Therefore, a
ombination of

swit
hes -w <value> and -u <deviation> may provide a prior information to Ordo to
al
ulate

the white advantage. When a high number of games is played, this prior information will be less

and less relevant. Ordo assumes a Gaussian distribution
entered in <value> with a standard

<deviation>.

4

http://en.wikipedia.org/wiki/Comma-separated_values

2

Simulation and errors

The swit
h -s <n> instru
ts Ordo to perform <n> simulations, virtually replaying the games <n>

times. The results will be randomly re-assigned for ea
h game a

ording to the probabilities

al
ulated from the ratings. After running the simulations, and based on all those di�erent results,

Ordo
al
ulates standard deviations (errors) for the ratings. For this purpose, an optional swit
h

is -F value, where value is the %
on�den
e level (The default is 95.0, whi
h is roughly equivalent

to ± 2 standard deviations). The errors displayed are relative to the pool average. However, if one

of the players is an
hored, the rest of the errors will be relative to that an
hor. In this
ase, the

an
hor error will be zero sin
e it is the point of referen
e. To get the errors for rating di�eren
es

between a given pair of players, the swit
h -e file.
sv should be added. It will generate an error

matrix saved in file.
sv.

To run these simulations, a minimum reasonable number is about -s 100. Take into a

ount that

the more simulations, the longer it takes to
omplete the runs. The errors
al
ulated will be more

a

urate, but more than 1000 simulations is probably not needed. This is an example to use these

swit
hes:

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt -W -s1000 -e errors.
sv

It is important to emphasize that the errors displayed in the output are always against the referen
e

(an
hor). For example, if the an
hor is Engine X (Deep Shredder 12 in the example above) set

at 2800, and Engine Y is 2900 with an error of 20, then the interpretation is that the di�eren
e

between Y and X is 100 ± 20.

As mentioned above, when no engine is set as an
hor the hidden referen
e is the average of the

pool. For instan
e, if the average is set to 2500 (default is 2300) and the rating output for Engine

X is 2850 ± 20, the di�eren
e between Engine X and the average of the pool is 350 ± 20. That is

how the output should be interpreted. It is in
orre
t to use this error to estimate relative values

against other engines. For that purpose, the swit
h -e needs to be provided to obtain a matrix

with every single error for every engine-engine mat
h ups.

If an an
hor (referen
e) is provided, but the user wants the errors to be relative to the average of

the pool, the swit
h -V should be added in the
ommand line. This is what other rating software

has as default.

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt -W -s1000 -e errors.
sv

-V

In this
ase, you will see that the rating of Deep Shredder 12 will not have an error of zero.

Parallel
al
ulation of simulations

If the swit
h -n <value> is used, Ordo will use <value> number of pro
essors in parallel for the

simulations. This may be a signi�
ant speed-up.

Superiority
on�den
e

If simulations have been run, using the swit
h -C will output a matrix with the
on�den
e for

superiority (CFS) between ea
h of the players. Ea
h of the numbers is an answer to the question

3

"What is the maximum
on�den
e I
an set the test to show that player x is not inferior to player

y and still obtain the same positive answer?". The matrix �le is in
omma separated values format,

and it
ould be opened by any spreadsheet program if it was saved with the *.
sv extension. In

addition, if the user provides the swit
h -J, the CFS values between the player and the next one

in the ranking will be displayed in the output.

Draw rate (for equal opponents)

By default, Ordo
onsiders that the draw rate for evenly mat
hed players is 50%. Internally, it

al
ulates the draw for mat
hes in whi
h a player is stronger than the other. This parameter

does not
hange the rating results, but it will a�e
t the errors
al
ulated after simulations. Two

swit
hes
an
ontrol this parameter. First, -d sets the draw rate (whi
h is assumed to be
onstant

throughout the database). Alternatively, the (highly re
ommended) swit
h -D lets Ordo
al
ulate

it automati
ally. It makes sense if the user wants to
al
ulate more a

urate errors, or just for

informative purposes. For instan
e:

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt -W -s1000 -e errors.
sv

-V -D

Will
al
ulate the draw rate and outputs it at the end of

ratings.txt

(or the s
reen, if the swit
h -o is omitted). Similarly to the
al
ulation of the white advantage, the

user
an provide prior information for the draw rate. A
ombination of swit
hes -d <value> and

-k <deviation> will do that. Ordo assumes a Gaussian distribution
entered in <value> with a

standard <deviation>. When as the number of games in
reases, this information will have less

and less impa
t on the �nal result.

Ignore draws (-X swit
h)

This swit
h internally ignores all draws from the database as they have not been played. This is

only present for experimentation, not for a serious rating
al
ulation.

Minimum games

In
ertain
ases, the user may not want to in
lude
ertain players with very few games played in the

rating. For that reason, the swit
h -t <value> provides to the program a threshold of minimum

games played for a parti
ipant to be in
luded in the �nal list. The games are still in
luded for

al
ulation.

Perfe
t winners and losers

Players who won all games (perfe
t winners) or lost all of them (perfe
t losers)
reate problems in

the rating
al
ulation. It is impossible to estimate those rating a

urately be
ause winning all or

losing all
orrespond to a +∞ or −∞ rating, respe
tively. In addition, the
al
ulation slows down

onsiderably be
ause of the impossibility to
onverge. Ordo removes these players automati
ally

during the
al
ulation, and pla
e them ba
k after
onvergen
e has been rea
hed. The rating

4

assigned to them is a minimum ("�oor") for perfe
t winners and a maximum ("
eiling") for perfe
t

losers. This is indi
ated by a > or < symbol in the output text. These limits are established

by
al
ulating the rating they would have had if one of the games was a draw. For example, if

player had a performan
e of 10/10, a proper rating estimation lays between (+∞) and the one

orresponding to a performan
e of 9.5/10. A ni
e side e�e
t of this te
hnique is that distinguishes

players with perfe
t s
ore that had di�erent type of opposition or played di�erent number of games.

It is not the same to have been undefeated for three games than twenty.

Group
onne
tions and pathologi
al data

Sometimes, a data set
ontains players or groups/pools of players that did not play enough games

against the rest. These isolated groups produ
e meaningless ratings when
ompared to the general

pool. The -g swit
h saves a report of how many groups are in this situation. The information

in this report may guide the user to properly link those groups with extra games. Doing so will

stabilize the whole ranking. When the data set is "ill"
onne
ted, Ordo will attempt to run by

purging perfe
t winners and perfe
t losers. Their
eiling or �oor rating will be estimated at the

end (see above). However, a warning will be diplayed. When purging those players is not enough

to guarantee a proper
onne
tion, a se
ond warning will be issued. But, this time the program will

stop and exit with an error
ode (i.e. non-zero). To for
e the
al
ulation even in these
onditions,

the swit
h -G should be used. Be
areful, this
ould be slow and the algorithm may not
onverge.

Multiple an
hors

When several players are known to have very a

urate ratings, it is possible to assigned �xed values

to them. In that
ase, they will behave like multiple an
hors. An example will be:

ordo -p games.pgn <optional swit
hes> -m an
hors.
sv

where an
hors.
sv is a �le that
ontains lines like this

"Gull 1.1", 2350.0

"Glaurung 2.2 JA", 2170

"Crafty 23.1 JA", 2000

telling Ordo to �x Gull 1.1, Glaurung 2.2 JA, and Crafty 23.1 JA to 2350, 2170, and 2000,

respe
tively. The name of the an
hors should be present in games.pgn.

Mat
h up information

The swit
h -j will output to a �le information about all di�erent mat
hes that have been played.

It shows the rating di�eren
e (Di�) between those parti
ular players and the standard deviation

(SD) for that di�eren
e. These values
ome from the simulations performed with the swit
h -s, so

everything is taken into a

ount, not only the information about a parti
ular mat
h. In addition,

there is a
olumn with the
on�den
e that would be needed in order to be able to
laim superiority

based on Di� and SD. The
olumn is CFS,
on�den
e for superiority, whi
h plays the same role

as the likelihood of superiority

5

. A fragment of the output is:

5

https://
hessprogramming.wikispa
es.
om/Mat
h+Statisti
s

5

3) Critter 1.4 SSE42 2562 : 2400 (+1467,=772,-161), 77.2 %

vs. : games (+, =, -), (%) : Diff, SD, CFS (%)

Houdini 2.0 STD : 100 (23, 54, 23), 50.0 : -35, 9, 0.0

Komodo 4 SSE42 : 100 (33, 44, 23), 55.0 : +6, 11, 71.0

Deep Rybka 4.1 SSE42 : 100 (28, 48, 24), 52.0 : +23, 10, 99.0

Sto
kfish 2.1.1 JA : 100 (25, 66, 9), 58.0 : +44, 8, 100.0

In this example, we
an say that Critter 1.4 SSE42 is superior to Deep Rybka 4.1 SSE42 with a

99%
on�den
e. We
an only say that it is better than Komodo 4 SSE42 with a 71%
on�den
e.

The reason is be
ause the rating di�eren
e is 6 and the standard deviation is 11.

Loose an
hors with prior information (-y)

Ordo o�ers an alternative approa
h to
al
ulate ratings with previous knowledge from the user

(using Bayesian
on
epts). With the swit
h -y, the user
an provide a �le with a list of players

whose ratings will �oat around an estimated value. Those players will work as loose an
hors in

the list. This strategy is useful when the data is s
ar
e and, as a
onsequen
e, wild swings
ould

appear in the ratings. This is what happens at the beginning of a new rating list or tournament.

Ordo a

epts an estimated rating for a player, but takes into a

ount how un
ertain that value is.

In other words, the user also has to provide the standard error for the estimated value. That means

that the value will be 68% of the time between ± the un
ertainty value provided. It is assumed

that the estimated rating will follow Gaussian distribution. In Bayesian terms, that
onstitute

the prior distribution for the rating of that parti
ular player. For instan
e, if one line of the �le

provided with the swit
h -y
ontains

"Houdini 3", 3200, 50

That means Houdini's initial rating is 3200 with an un
ertainty of 50. With this approa
h the user

should have the best edu
ated guess possible, otherwise, the ranking will su�er. Using information

from a previous well established rating lists
an add stability to the new list and, as games are

added, the
ontribution of the "previous information" will fade away.

Relative an
hors (-r)

Another problem in some engine tournaments is that version upgrades enter with no previous

ratings. However, we know in
ertain situations that the new versions
annot have very di�erent

ratings from the previous one. Therefore, the user
an make a good edu
ated guess about the

rating of the new version. For instan
e, if you know that the new version is within 20 points of

the previous one you
an use the -r swit
h to provide a �le with lines like this:

"Bouquet 1.8a", "Bouquet 1.8", 0, 20

That means version 1.8a
ame after 1.8 and it is estimated to have the same rating (0) with an

un
ertainty of 20. With di�erent versions, you
an have di�erent lines. An example with Sto
k�sh

may be:

"Sto
kfish 160913", "Sto
kfish 4", 0, 20

"Sto
kfish 4", "Sto
kfish 250413", 0, 50

6

"Sto
kfish 250413", "Sto
kfish 120413", 0, 20

"Sto
kfish 120413", "Sto
kfish 250313", 0, 20

This
onstitute di�erent relative an
hors. When two versions are radi
ally di�erent, you
an say

nothing and they will be treated as di�erent engines, or for instan
e

"Komodo 1063", "Komodo 4534", 0, 1000

The �rst is a
omplete rewrite with a parallel sear
h. Thus, the un
ertainty of 1000 re�e
ts this

fa
t and make both versions virtually dis
onne
ted. If you want to in
lude more spe
i�
 info, you

ould say

"Komodo 1063", "Komodo 4534", 160, 100

Here, 160 is the estimation of how mu
h improvement you have by going from 1
ore to 16 and

100 represents how un
ertain that is.

Swit
hes

The list of the swit
hes provided are:

usage: ordo [-OPTION℄

-h print this help

-H print just the swit
hes

-v print version number and exit

-L display the li
ense information

-q quiet mode (no s
reen progress updates)

-Q quiet mode (no s
reen progress ex
ept simulation
ount)

-a <avg> set rating for the pool average

-A <player> an
hor: rating given by '-a' is fixed for <player>, if provided

-V errors relative to pool average, not to the an
hor

-m <file> multiple an
hors: file
ontains rows of "An
horName",An
horRating

-y <file> loose an
hors: file
ontains rows of "Player",Rating,Un
ertainty

-r <file> relations: rows of "PlayerA","PlayerB",delta_rating,un
ertainty

-R remove older player versions (given by -r) from the output

-w <value> white advantage value (default=0.0)

-u <value> white advantage un
ertainty value (default=0.0)

-W white advantage will be automati
ally adjusted

-d <value> draw rate value % (default=50.0)

-k <value> draw rate un
ertainty value % (default=0.0 %)

-D draw rate value will be automati
ally adjusted

-z <value> s
aling: set rating for winning expe
tan
y of 76% (default=202)

-T display winning expe
tan
y table

-p <file> input file in PGN format

-
 <file> output file (
omma separated value format)

-o <file> output file (text format), goes to the s
reen if not present

-E output in Elostat format (rating.dat, programs.dat & general.dat)

-g <file> output file with group
onne
tion info (no rating output on s
reen)

-G for
e program to run and ignore warnings for isolated groups

-j <file> output file with head to head information

-s # perform # simulations to
al
ulate errors

-e <file> save an error matrix, if -s was used

-C <file> save a matrix (.
sv) with
onfiden
e for superiority (-s was used)

-J add an output
olumn with
onfiden
e for superiority (next player)

-F <value>
onfiden
e (%) to estimate error margins. Default is 95.0

-X ignore draws

-t <value> threshold of minimum games played for a parti
ipant to be in
luded

-N <value> number of de
imals in output, minimum is 0 (default=1)

-M for
e maximum-likelihood estimation to obtain ratings

7

-n <value> number of pro
essors for parallel
al
ulation of simulations

Memory Limits

Currently, the program
an handle almost un unlimited number of games and players. It is only

limited by the memory of the system.

Exit
ode

When Ordo ran su

essfully, it will exit with a
ode = 0. When problems arose (insu�
ient

memory, database not well
onne
ted, empty input, wrong parameters, et
.), Ordo will return a

number that is guaranteed to be non-zero. This
ould be used in s
ripts to know whether the

pro
ess rea
hed its goal or not. For instan
e, the following s
ript in bash (linux) will
at
h if

pro
essing games.pgn was
orre
t or not.

#!/bin/sh

./ordo -p games.pgn

exit_
ode=$?

if [$exit_
ode = 0 ℄; then

e
ho Ordo run properly

else

e
ho Ordo returned with error: $exit_
ode

fi

Ordoprep

A tool is available in another distribution

6

to shrink the PGN �le. The output will
ontain only

the results of the games. In addition, it
ould dis
ard players that won all games, or lost all games.

Other swit
hes allow the ex
lusion of players that do not have a minimum performan
e or played

too few games.

Typi
al usage is:

ordoprep -p raw.pgn -o shrunk.pgn

Whi
h saves in shrunk.pgn a pgn �le with only the results. You
an add swit
hes like this:

ordoprep -p raw.pgn -o shrunk.pgn -d -m 5 -g 20

where -d tells Ordoprep to dis
ard players with 100% or 0% performan
e, -m 5 will ex
lude players

who did not rea
h a 5% performan
e, and -g 20 will ex
lude players with less than 20 games. After

all this, shrunk.pgn
ould be used as input for Ordo

6

https://github.
om/mi
higuel/Ordoprep/releases

8

Model for rating
al
ulation

The model assumes that di�eren
es in strength are analogous to di�eren
es in levels of energy

(Fig. 1). A lower (more stable) level of energy would represent a stronger player. The analogy

is that a valley is better at attra
ting water than a mountain top. In physi
s and
hemistry, a

parti
le or a mole
ule that
an be in two di�erent states
an be predi
ted to be in one or the other

with a
ertain probability.

Figure 1: Energeti
 levels as strength levels

The probability to be found at ea
h level is proportional to the Boltzmann fa
tor

7 e−βEi
. If Na is

the number of parti
les in level A, and Nb is the number of parti
les in level B, their ratio will be:

Na

Nb

=
e−βEa

e−βEb
= e−β(Ea−Eb)

(1)

β is a
onstant of the system. The analogy is that we treat the probabilities of a win to land in

level A or B as the probability of a parti
le to be in A or B. Therefore, after reordering equation

1, the fra
tion of wins (fb,a) of player B in a mat
h vs. A will be:

fb,a =
Nb

Na +Nb

=
1

1 + e−β(Ea−Eb)
(2)

if we de�ne strength rating R as the negative value of energy, then, Ra = −Ea. For
onvenien
e,

we �ip the s
ales with the purpose that higher ratings are represented with higher values (Fig. 2),

and the the fra
tion of wins (fb,a) of player B in a mat
h vs. A will be represented by eq. 3.

fb,a =
1

1 + e−β(Rb−Ra)
(3)

7

https://en.wikipedia.org/wiki/Boltzmann_fa
tor

9

Figure 2: Rating s
ale

This equation has the same form as the logisti
 fun
tion

8

. With this equation we
an
al
ulate the

predi
ted fra
tion of wins between two players. The predi
ted performan
e Px, or number of wins

of player x among a pool of other players will be the summation of ea
h of the predi
ted fra
tions

f for ea
h game.

Px = fx,opp(1) + fx,opp(2) + ... + fx,opp(n) =
n
∑

i=1

fx,opp(i) (4)

where n is the total number of games played by x and opp(i) is the opponent it fa
ed in the game

i. Then:

Px =
n
∑

i=1

1

1 + e−β(Rx−Ropp(i))
(5)

The most likely strength rating values (R) for ea
h player are ones that satisfy that ea
h predi
ted

performan
e Px equals the respe
tive observed performan
e (Ox) of player x (a
tual number of

games won by x). Therefore, the goal is to �nd R values so the following un�tness (U) s
ore equals
zero, where m is the total number of players, and j is ea
h individual player.

U =

m
∑

j=1

(Pj −Oj)
2

(6)

Finding an adequate pro
edure to minimize U until rea
hes zero is
riti
al for a proper
onvergen
e

towards the optimal solution. The way Ordo �ts it is in dis
rete steps (similar to hill
limbing

9

),

and making those steps smaller and smaller on
e the
onvergen
e was rea
hed. However, those

steps are
onstrained to
ertain values to avoid big swings during the
al
ulation. After many

di�erent tests, this pro
edure was found to be safe and fast.

8

http://en.wikipedia.org/wiki/Logisti
_fun
tion

9

http://en.wikipedia.org/wiki/Hill_
limbing

10

S
ale

Chess players are a

ustomed to the Elo rating. Traditionally, it has been based on a normal

(Gaussian) distribution, whi
h is the one that the World Chess Federation (FIDE) still uses

10

.

Here, the default value of β was
hosen to resembles the Elo s
ale. For that reason, the rating

di�eren
e when the winning expe
tan
y is 76% has been set to 202 rating points. This parameter

ould be modi�ed with the swit
h -z, and the overall s
ale
an be displayed with swit
h -T.

The model is valid if the strength assigned to the individual players is additive like energy. If

we know the strength di�eren
es between A→B and B→C, we should be able to
al
ulate A→C

as A→B + B→C. Then, this should a

urately predi
t the results of a mat
h between A and C.

Empiri
al observations seem to suggests that those estimations are reasonable, at least within a

ertain range.

Certain theoreti
al assumptions have be done to a

ount the existen
e of draws. One of the is that

the a
tual draw rate remains similar throughout the rating s
ale. Empiri
ally, this is a reasonable

approximation for most
ases.

White advantage
al
ulation

The rationale to
al
ulate the white advantage (Wadv) is that the expe
ted out
ome for white

should be as
lose as possible to the a
tual white performan
e. In other words, the number of

points obtained by white (Wp) should be the same as the number of points expe
ted to be obtained

by white (We).

E = (Wp −We)
2

(7)

Therefore, the optimum Wadv is the one that minimizes E, whi
h is the overall error squared in

equation 7.

We =

n
∑

i=1

Expectancy(RWi +Wadv, RBi) (8)

Here, n is the total number of games, RWi and RBi are the ratings (in game i) of white and bla
k,
respe
tively. Expectancy is a
tually equation 3.

We =

n
∑

i=1

1

1 + e−β(RWi+Wadv−RBi)
(9)

Then,
ombining 7 and 9

E =

(

Wp −
n
∑

i=1

1

1 + e−β(RWi+Wadv−RBi)

)2

(10)

10

http://en.wikipedia.org/wiki/Elo_rating_system

11

Wadv is
al
ulated iteratively, until E is minimized. This
al
ulation assumes thatWadv is relatively

onstant throughout the database. On
e Wadv is obtained, the ratings are re-
al
ulated. The

pro
edure
ontinues until the numbers stabilize.

Draw rate model

To estimate the probability of a draw in a single game the model from Fig. 2 needs to be expanded

to have an extra "draw state" (Fig. 3).

Figure 3: Rating s
ale introdu
ing an extra state for draws

The draw rate does not a�e
t the rating
al
ulation, or the performan
e for ea
h player in the

simulations. However, it a�e
ts the relative distribution of wins, losses, and draws simulated,

whi
h has an in�uen
e on the errors
al
ulated. Therefore, to have a more realisti
 simulation and

an a

urate estimation of the errors we need to predi
t the probability for a draw. But, the draw

rate is not uniform, as it depends on the rating di�eren
es between the opponents. Thus, draw

rate depends on two parameters, Deq (draw rate when the two opponents are of equal strength)

and ∆R. Ordo assumes that Deq is relatively
onstant throughout the database. If we know Deq,

the following equation

E =
M
∑

m=1

(Dm −Nm Dexp(∆Rm +Wadv, Deq))
2

(11)

will give E as the overall error in the estimation of Deq. Here, m is the mat
h number, M is the

total number of mat
hes, Nm is the number of games played in ea
h mat
h m, ∆Rm is the rating

di�eren
e in that parti
ular mat
h, Dm is the number of draws observed, and Wadv is the white

advantage. Dexp is a fun
tion that gives the draw rate expe
ted given a
ertain ∆R and Deq. Note

that here a mat
h is
onsidered any series of games between two opponents with the same
olors.

In other words, they are any set of games with the same opponents and
onditions. With this

12

equation, Dexp is
al
ulated iteratively until E is minimized. To apply this algorithm we need the

fun
tion Dexp. In the following se
tion we show how to
al
ulate the draw rate when opponents

are of equal strength and later from a given p and Deq. From ∆R, the performan
e expe
ted (p)

an be dire
tly
al
ulated.

Draw rate between opponents of equal strength

We
an model the draw rate by introdu
ing an extra draw state (Fig. 3). This is a derivation of

the equation that relates draw rate (D) and δ.

1 = W +D + L (12)

Here, W , D, and L are the respe
tive win, draw, and loss rates. Sin
e the opponents are of equal

strength, W equals L.

1 = 2W +D (13)

Based on the assumptions that the probabilities of the di�erent levels are proportional to the

Boltzmann fa
tor

11 e−βEi
, the following ratio
an be established (Ri = −Ei, higher ratings mean

lower "energy levels").

D

W
=

eβRD

eβRW
= eβ(RD−RW) = eβδ (14)

Repla
ing into eq. 13

1 = eβδW + 2W (15)

W =
1

eβδ + 2
(16)

Combining with eq. 13 we obtained Deq, whi
h is the draw rate when both players are equally

strong. This value depends on δ.

D = Deq = 1− 2

eβδ + 2
=

eβδ

eβδ + 2
(17)

Draw rate from p (performan
e) and Deq

Performan
e (p) is the ratio of the total points obtained by a player in a given number of games.

It is de�ned by this simple relationship.

p = W +D/2; W = p−D/2 (18)

11

https://en.wikipedia.org/wiki/Boltzmann_fa
tor

13

To de�ne Deq, we are going to assume it is
onstant, regardless of the absolute strength of ea
h

individual. We then have three possible states, W (win), D (draw), and L (loss), in whi
h the

state D is separated by δ from the average of the levels W and L. In this s
enario, and reordering

eq. 17 we have:

1−Deq

2Deq

= e−βδ
(19)

For
onvenien
e we will
all e−βδ = φ then

1−Deq

2Deq

= φ (20)

Deq is the rate when RW and RL are at the same level. If RW and RL
hange, and δ remains at

the same distan
e from the average of RW and RL, the equations that relate the probabilities for

ea
h state are:

Ravg =
RW − RL

2
; x = RW − Ravg = Ravg − RL (21)

W/D = eβ(x−δ) = eβxe−βδ
(22)

D/L = eβ(x+δ) = eβx/e−βδ
(23)

For
onvenien
e, if we
all e−βδ = φ as we did before we get

W/D = eβxφ; D/L = eβx/φ (24)

therefore

W

D

L

D
= φ2; L =

φ2D2

W
(25)

ombining this equation with eq. 12 and reordering:

0 = W 2 +DW −W + φ2D2
(26)

repla
ing W with eq. 18 we obtain

0 = (p−D/2)2 +D(p−D/2)− (p−D/2) + φ2D2
(27)

expanding, simplifying, and reordering leads to

0 = (4φ2 − 1)D2 + 2D + 4(p2 − p) (28)

repla
ing with eq. 20

14

0 =

(

(

1−Deq

Deq

)2

− 1

)

D2 + 2D + 4(p2 − p) (29)

Solving this quadrati
 equation, we obtain the predi
ted draw rate (D) between two given op-

ponents, as long as we know the predi
ted performan
e (p) and the draw rate between equally

mat
hed opponents (Deq). This is used to plug it in eq. 11.

Draw rate and win rate relationship

Reordering eq. 26 we obtain

D2 = φ−2 W (1−W −D) (30)

Note that this relationship is equivalent to the basi
 assumption used by Davidson

12

to develop

his draw model

D = ν
√
W L (31)

Here, ν = φ−2
and L = 1−W −D. Shawul and Coulom showed that this relationship is superior

for
hess engines when
ompared to other alternatives

13

. Repla
ing φ in eq. 30 with eq. 20 we

obtain

D2 =

(

2Deq

1−Deq

)2

W (1−W −D) (32)

Equation 32 is the one used by Ordo to obtain the draw rate for any pair of opponents as a fun
tion

of win probability (W) and draw rate for equal opponents (Deq).

Draw rate
al
ulation

The rationale to
al
ulate the draw rate for equal opponents (Deq) is that the expe
ted out
ome

of number of draws showuld be as
lose as possible to the a
tual number of draws in the database.

In other words, the number of draws observed (Dobs) should be the same as the number of draws

expe
ted (Dexp).

E = (Dobs −Dexp)
2

(33)

Therefore, the optimum Deq is the one that minimizes E, whi
h is the overall error squared in

equation 33.

Dexp =

n
∑

i=1

Di (34)

12

Equation 2.5 in http://stat.fsu.edu/te
hreports/M169.pdf

13

https://dl.dropboxuser
ontent.
om/u/55295461/elopapers/elopapers/ChessOut
omes.pdf

15

Here, n is the total number of games, and Di is the probability of a draw for game i. From equation

29, Di
ould be solved as

Di =
−1 +

√

1− 4(p2i − pi)(4(
1−Deq

2Deq
)2 − 1)

4(1−Deq

2Deq
)2 − 1

(35)

where pi is the expe
ted performan
e for white for ea
h game, and
ould be
al
ulated from

equation 3 as

pi =
1

1 + e−β(RWi+Wadv−RBi)
(36)

RWi and RBi are the ratings (in game i) of white and bla
k, respe
tively. On
e Deq is estimated,

pi and Di are
al
ulated (equations 35 and 36) for ea
h game to obtain Dexp and E (equations 33

and 34). Optimum value of Deq is the one that minimizes E and it is
al
ulated iteratively. This

al
ulation assumes that Deq is relatively
onstant throughout the database. On
e Deq is obtained,

the ratings are re-
al
ulated as it is done with Wadv. The pro
edure
ontinues until the numbers

stabilize.

Rating
al
ulation with prior information

When user provides Ordo with either loose an
hors, relative an
hors, white advantage un
ertainty,

or a draw rate un
ertainty the
al
ulation is performed by a maximum-likelihood estimation. In

those
ases, for ea
h game the probability for the given out
ome (W, D, or L) is
al
ulated and

the logarithm of this value is added and a

umulated. This will
onstitute an un�tness s
ore

that will need to be minimized. In addition, to this s
ore, the logarithm of the probabilities for

ea
h loose an
hor, relative an
hor, white advantage, and draw rate are a

umulated. An overall

minimization brings optimum values for the ratings of ea
h player and ea
h of the above mentioned

parameters. Note that adding the logarithm of ea
h of the probabilities is analogous to multiplying

the probabilities.

For
ing maximum likelihood

Another option to for
e Ordo to perform a maximum-likelihood estimation to
al
ulate the ratings

is by providing the swit
h -M. This option is generally a bit slower and probably not ne
essary

sin
e the output should be nearly identi
al with perfe
t
onvergen
e, but it is a good feature for

omparison an debugging.

A
knowledgments

Adam Hair has extensively tested and suggested valuable ideas.

Li
ense

ordo v1.0

16

Copyright (
) 2015 Miguel A. Balli
ora

Ordo is program for
al
ulating ratings of engine or
hess players

Ordo is free software: you
an redistribute it and/or modify

it under the terms of the GNU General Publi
 Li
ense as published by

the Free Software Foundation, either version 3 of the Li
ense, or

(at your option) any later version.

Ordo is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Publi
 Li
ense for more details.

You should have re
eived a
opy of the GNU General Publi
 Li
ense

along with Ordo. If not, see <http://www.gnu.org/li
enses/>.

17

