ORDO v1.0
Ratings for chess and other games*

Miguel A. Ballicoral

Ordo is a program designed to calculate ratings of individual chess engines (or players). It
has a similar concept than the Elo rating®, but with a different model and algorithm. Ordo
keeps consistency among ratings because it calculates them considering all results at once. In
that respect, it behaves similarly to BayesElo’. Ordo is distributed under the GPL license
and binaries are available for GNU /Linux, Windows®, and OS X. In addition, the sources
are portable and could be easily compiled for other systems.

®http://en.wikipedia.org/wiki/Elo_rating_system
Yhttp://remi.coulom.free.fr/Bayesian-Elo/

Precompiled Files

In this distribution, you may find versions for GNU/Linux (32 and 64 bits) or Windows® (64 and
32 bits). For convenience, you can rename the proper file for your system to ordo (GNU/Linux)
or ordo.exe (Windows®). As an input example, a publicly available file games.pgn is included’.
A batch file (ordo_example.bat) is included in the Windows® distribution?. It is a quick and
great start for users of that operating system.

GNU/Linux compilation and installation

After unzipping the contents, you can type
make
make install

or in Ubuntu

sudo make install

Usage

The input should be a file that adheres to the PGN standard®. Based on the results in that file, Ordo
automatically calculates a ranking . The output can be a plain text file and /or a comma separated

*Copyright © 2015 Miguel A. Ballicora

fe-mail: mballicora (at gmail dot com)

!Taken from the recently discontinued Ingo Bauer’s IPON rating list
2Kindly prepared by Adam Hair
3http://en.wikipedia.org/wiki/Portable_Game_Notation

value* (.csv) file. The .csv file is an interesting option because it can be opened/imported by
most spreadsheet programs. Once imported, the user can choose to format the output externally.
The simplest way to use Ordo is typing in the command line:

ordo -p games.pgn

which will take the results from games.pgn and output the text ranking on the screen. If you want
to save the results in a file ratings.txt, you can run:

ordo -p games.pgn -0 ratings.txt

By default, the average rating of all the individuals is 2300. If you want a different overall average,
you can use the switch -a to set it. For instance to have and average of 2500, you can do:

ordo -a 2500 -p games.pgn -0 ratings.txt

or if you want the results in .csv format, use the switch -c.
ordo -a 2500 -p games.pgn -c rating.csv

If you want both, you can use:

ordo -a 2500 -p games.pgn -0 ratings.txt -c¢ rating.csv

Anchor

In addition, -A will fix the rating of a given player as a reference (anchor) for the whole pool of
players.

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt

That will calculate the ratings from games.pgn, save it in ratings.txt, and anchor the engine
Deep Shredder 12 to a rating of 2800. Names that contain spaces should be surrounded by quote
marks as in this example.

White advantage

The switch -w sets the rating advantage for having white pieces in chess. Alternatively, the (highly
recommended) switch -W lets Ordo calculate it automatically. With this switch we can complete
the above example:

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -0 ratings.txt -W

If the user knows that the white advantage is most likely a certain value that could vary within
a certain range, this uncertainty could be given by the switch -u. Therefore, a combination of
switches -w <value> and -u <deviation> may provide a prior information to Ordo to calculate
the white advantage. When a high number of games is played, this prior information will be less
and less relevant. Ordo assumes a Gaussian distribution centered in <value> with a standard
<deviation>.

‘http://en.wikipedia.org/wiki/Comma-separated_values

Simulation and errors

The switch -s <n> instructs Ordo to perform <n> simulations, virtually replaying the games <n>
times. The results will be randomly re-assigned for each game according to the probabilities
calculated from the ratings. After running the simulations, and based on all those different results,
Ordo calculates standard deviations (errors) for the ratings. For this purpose, an optional switch
is -F value, where value is the % confidence level (The default is 95.0, which is roughly equivalent
to £+ 2 standard deviations). The errors displayed are relative to the pool average. However, if one
of the players is anchored, the rest of the errors will be relative to that anchor. In this case, the
anchor error will be zero since it is the point of reference. To get the errors for rating differences
between a given pair of players, the switch -e file.csv should be added. It will generate an error
matrix saved in file.csv.

To run these simulations, a minimum reasonable number is about -s 100. Take into account that
the more simulations, the longer it takes to complete the runs. The errors calculated will be more
accurate, but more than 1000 simulations is probably not needed. This is an example to use these
switches:

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt -W -s1000 -e errors.csv

It is important to emphasize that the errors displayed in the output are always against the reference
(anchor). For example, if the anchor is Engine X (Deep Shredder 12 in the example above) set
at 2800, and Engine Y is 2900 with an error of 20, then the interpretation is that the difference
between Y and X is 100 £ 20.

As mentioned above, when no engine is set as anchor the hidden reference is the average of the
pool. For instance, if the average is set to 2500 (default is 2300) and the rating output for Engine
X is 2850 £ 20, the difference between Engine X and the average of the pool is 350 4+ 20. That is
how the output should be interpreted. It is incorrect to use this error to estimate relative values
against other engines. For that purpose, the switch -e needs to be provided to obtain a matrix
with every single error for every engine-engine match ups.

If an anchor (reference) is provided, but the user wants the errors to be relative to the average of
the pool, the switch -V should be added in the command line. This is what other rating software
has as default.

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt -W -s1000 -e errors.csv
-V

In this case, you will see that the rating of Deep Shredder 12 will not have an error of zero.
Parallel calculation of simulations

If the switch -n <value> is used, Ordo will use <value> number of processors in parallel for the
simulations. This may be a significant speed-up.

Superiority confidence

If simulations have been run, using the switch -C will output a matrix with the confidence for
superiority (CFS) between each of the players. Each of the numbers is an answer to the question

"What is the mazimum confidence I can set the test to show that player = is not inferior to player
y and still obtain the same positive answer?". The matrix file is in comma separated values format,
and it could be opened by any spreadsheet program if it was saved with the *.csv extension. In
addition, if the user provides the switch -J, the CFS values between the player and the next one
in the ranking will be displayed in the output.

Draw rate (for equal opponents)

By default, Ordo considers that the draw rate for evenly matched players is 50%. Internally, it
calculates the draw for matches in which a player is stronger than the other. This parameter
does not change the rating results, but it will affect the errors calculated after simulations. Two
switches can control this parameter. First, -d sets the draw rate (which is assumed to be constant
throughout the database). Alternatively, the (highly recommended) switch -D lets Ordo calculate
it automatically. It makes sense if the user wants to calculate more accurate errors, or just for
informative purposes. For instance:

ordo -a 2800 -A "Deep Shredder 12" -p games.pgn -o ratings.txt -W -s1000 -e errors.csv
-V -D

Will calculate the draw rate and outputs it at the end of
ratings.txt

(or the screen, if the switch -o is omitted). Similarly to the calculation of the white advantage, the
user can provide prior information for the draw rate. A combination of switches -d <value> and
-k <deviation> will do that. Ordo assumes a Gaussian distribution centered in <value> with a
standard <deviation>. When as the number of games increases, this information will have less
and less impact on the final result.

Ignore draws (-X switch)

This switch internally ignores all draws from the database as they have not been played. This is
only present for experimentation, not for a serious rating calculation.

Minimum games

In certain cases, the user may not want to include certain players with very few games played in the
rating. For that reason, the switch -t <value> provides to the program a threshold of minimum
games played for a participant to be included in the final list. The games are still included for
calculation.

Perfect winners and losers

Players who won all games (perfect winners) or lost all of them (perfect losers) create problems in
the rating calculation. It is impossible to estimate those rating accurately because winning all or
losing all correspond to a 400 or —oo rating, respectively. In addition, the calculation slows down
considerably because of the impossibility to converge. Ordo removes these players automatically
during the calculation, and place them back after convergence has been reached. The rating

4

assigned to them is a minimum ("floor") for perfect winners and a maximum ("ceiling") for perfect
losers. 'This is indicated by a > or < symbol in the output text. These limits are established
by calculating the rating they would have had if one of the games was a draw. For example, if
player had a performance of 10/10, a proper rating estimation lays between (+o00) and the one
corresponding to a performance of 9.5/10. A nice side effect of this technique is that distinguishes
players with perfect score that had different type of opposition or played different number of games.
It is not the same to have been undefeated for three games than twenty.

Group connections and pathological data

Sometimes, a data set contains players or groups/pools of players that did not play enough games
against the rest. These isolated groups produce meaningless ratings when compared to the general
pool. The -g switch saves a report of how many groups are in this situation. The information
in this report may guide the user to properly link those groups with extra games. Doing so will
stabilize the whole ranking. When the data set is "ill" connected, Ordo will attempt to run by
purging perfect winners and perfect losers. Their ceiling or floor rating will be estimated at the
end (see above). However, a warning will be diplayed. When purging those players is not enough
to guarantee a proper connection, a second warning will be issued. But, this time the program will
stop and exit with an error code (i.e. non-zero). To force the calculation even in these conditions,
the switch -G should be used. Be careful, this could be slow and the algorithm may not converge.

Multiple anchors

When several players are known to have very accurate ratings, it is possible to assigned fixed values
to them. In that case, they will behave like multiple anchors. An example will be:

ordo -p games.pgn <optional switches> -m anchors.csv
where anchors.csv is a file that contains lines like this

"Gull 1.1", 2350.0
"Glaurung 2.2 JA", 2170
"Crafty 23.1 JA", 2000

telling Ordo to fix Gull 1.1, Glaurung 2.2 JA, and Crafty 23.1 JA to 2350, 2170, and 2000,
respectively. The name of the anchors should be present in games.pgn.

Match up information

The switch -j will output to a file information about all different matches that have been played.
It shows the rating difference (Diff) between those particular players and the standard deviation
(SD) for that difference. These values come from the simulations performed with the switch -s, so
everything is taken into account, not only the information about a particular match. In addition,
there is a column with the confidence that would be needed in order to be able to claim superiority
based on Diff and SD. The column is CFS, confidence for superiority, which plays the same role
as the likelihood of superiority®. A fragment of the output is:

Shttps://chessprogramming.wikispaces.com/Match+Statistics

3) Critter 1.4 SSE42 2562 : 2400 (+1467,=772,-161), 77.2 %

vs. : games (+, =, -), h) - Diff, SD, CFS (%)
Houdini 2.0 STD : 100 (23, 54, 23), 50.0 : -35, 9, 0.0
Komodo 4 SSE42 : 100 (33, 44, 23), 55.0 : +6, 11, 71.0
Deep Rybka 4.1 SSE42 : 100 (28, 48, 24), 52.0 : +23, 10, 99.0
Stockfish 2.1.1 JA : 100 (25, 66, 9), 58.0 : +44, 8, 100.0

In this example, we can say that Critter 1.4 SSE42 is superior to Deep Rybka 4.1 SSE42 with a
99% confidence. We can only say that it is better than Komodo 4 SSE42 with a 71% confidence.
The reason is because the rating difference is 6 and the standard deviation is 11.

Loose anchors with prior information (-y)

Ordo offers an alternative approach to calculate ratings with previous knowledge from the user
(using Bayesian concepts). With the switch -y, the user can provide a file with a list of players
whose ratings will float around an estimated value. Those players will work as loose anchors in
the list. This strategy is useful when the data is scarce and, as a consequence, wild swings could
appear in the ratings. This is what happens at the beginning of a new rating list or tournament.
Ordo accepts an estimated rating for a player, but takes into account how uncertain that value is.
In other words, the user also has to provide the standard error for the estimated value. That means
that the value will be 68% of the time between + the uncertainty value provided. It is assumed
that the estimated rating will follow Gaussian distribution. In Bayesian terms, that constitute
the prior distribution for the rating of that particular player. For instance, if one line of the file
provided with the switch -y contains

"Houdini 3", 3200, 50

That means Houdini’s initial rating is 3200 with an uncertainty of 50. With this approach the user
should have the best educated guess possible, otherwise, the ranking will suffer. Using information
from a previous well established rating lists can add stability to the new list and, as games are
added, the contribution of the "previous information" will fade away.

Relative anchors (-r)

Another problem in some engine tournaments is that version upgrades enter with no previous
ratings. However, we know in certain situations that the new versions cannot have very different
ratings from the previous one. Therefore, the user can make a good educated guess about the
rating of the new version. For instance, if you know that the new version is within 20 points of
the previous one you can use the -r switch to provide a file with lines like this:

"Bouquet 1.8a", "Bouquet 1.8", 0, 20

That means version 1.8a came after 1.8 and it is estimated to have the same rating (0) with an
uncertainty of 20. With different versions, you can have different lines. An example with Stockfish
may be:

"Stockfish 160913", "Stockfish 4", 0, 20
"Stockfish 4", "Stockfish 250413", 0, 50

"Stockfish 250413", "Stockfish 120413", 0, 20
"Stockfish 120413", "Stockfish 250313", 0, 20

This constitute different relative anchors. When two versions are radically different, you can say
nothing and they will be treated as different engines, or for instance

"Komodo 1063", "Komodo 4534", 0, 1000

The first is a complete rewrite with a parallel search. Thus, the uncertainty of 1000 reflects this
fact and make both versions virtually disconnected. If you want to include more specific info, you
could say

"Komodo 1063", "Komodo 4534", 160, 100

Here, 160 is the estimation of how much improvement you have by going from 1 core to 16 and
100 represents how uncertain that is.

Switches

The list of the switches provided are:

usage: ordo [-OPTION]

-h print this help

-H print just the switches

-v print version number and exit

-L display the license information

-q quiet mode (no screen progress updates)

-Q quiet mode (no screen progress except simulation count)

-a <avg> set rating for the pool average

-A <player> anchor: rating given by ’-a’ is fixed for <player>, if provided
-V errors relative to pool average, not to the anchor

-m <file> multiple anchors: file contains rows of "AnchorName",AnchorRating
-y <file> 1loose anchors: file contains rows of "Player",Rating,Uncertainty
-r <file> relations: rows of "PlayerA","PlayerB",delta_rating,uncertainty
-R remove older player versions (given by -r) from the output

-w <value> white advantage value (default=0.0)

-u <value> white advantage uncertainty value (default=0.0)

-W white advantage will be automatically adjusted

-d <value> draw rate value % (default=50.0)

-k <value> draw rate uncertainty value % (default=0.0 %)

-D draw rate value will be automatically adjusted
-z <value> scaling: set rating for winning expectancy of 76% (default=202)
-T display winning expectancy table

-p <file> input file in PGN format

-c <file> output file (comma separated value format)

-o <file> output file (text format), goes to the screen if not present

-E output in Elostat format (rating.dat, programs.dat & general.dat)
-g <file> output file with group connection info (no rating output on screen)

-G force program to run and ignore warnings for isolated groups
-j <file> output file with head to head information
-s # perform # simulations to calculate errors

-e <file> save an error matrix, if -s was used
-C <file> save a matrix (.csv) with confidence for superiority (-s was used)

-J add an output column with confidence for superiority (next player)
-F <value> confidence (%) to estimate error margins. Default is 95.0
-X ignore draws

-t <value> threshold of minimum games played for a participant to be included
-N <value> number of decimals in output, minimum is 0 (default=1)
-M force maximum-likelihood estimation to obtain ratings

-n <value> number of processors for parallel calculation of simulations

Memory Limits

Currently, the program can handle almost un unlimited number of games and players. It is only
limited by the memory of the system.

Exit code

When Ordo ran successfully, it will exit with a code = 0. When problems arose (insufficient
memory, database not well connected, empty input, wrong parameters, etc.), Ordo will return a
number that is guaranteed to be non-zero. This could be used in scripts to know whether the
process reached its goal or not. For instance, the following script in bash (linux) will catch if
processing games.pgn was correct or not.

#!/bin/sh

./ordo -p games.pgn
exit_code=$7

if [$exit_code = 0]; then

echo Ordo run properly
else

echo Ordo returned with error: $exit_code
fi

Ordoprep

A tool is available in another distribution® to shrink the PGN file. The output will contain only
the results of the games. In addition, it could discard players that won all games, or lost all games.
Other switches allow the exclusion of players that do not have a minimum performance or played
too few games.

Typical usage is:
ordoprep -p raw.pgn -o shrunk.pgn

Which saves in shrunk.pgn a pgn file with only the results. You can add switches like this:
ordoprep -p raw.pgn -o shrunk.pgn -d -m 5 -g 20

where -d tells Ordoprep to discard players with 100% or 0% performance, -m 5 will exclude players
who did not reach a 5% performance, and -g 20 will exclude players with less than 20 games. After
all this, shrunk.pgn could be used as input for Ordo

Shttps://github.com/michiguel/Ordoprep/releases

Model for rating calculation

The model assumes that differences in strength are analogous to differences in levels of energy
(Fig. 1). A lower (more stable) level of energy would represent a stronger player. The analogy
is that a valley is better at attracting water than a mountain top. In physics and chemistry, a
particle or a molecule that can be in two different states can be predicted to be in one or the other

with a certain probability.

A

Where will the win ((‘))
end up going? /) \

weaker player

Energy
m
Q
Bunes ybuansg

Figure 1: Energetic levels as strength levels

The probability to be found at each level is proportional to the Boltzmann factor” e PFi. If N, is
the number of particles in level A, and N, is the number of particles in level B, their ratio will be:

& _ e PEa _ e_B(Ea—Eb) (1)
Nb e_BEb

[is a constant of the system. The analogy is that we treat the probabilities of a win to land in
level A or B as the probability of a particle to be in A or B. Therefore, after reordering equation
1, the fraction of wins (fy.) of player B in a match vs. A will be:

Ny 1
fb,a: = —B(Ea—Ep) (2)

Na -+ Nb 1+e a™ b
if we define strength rating R as the negative value of energy, then, R, = —F,. For convenience,

we flip the scales with the purpose that higher ratings are represented with higher values (Fig. 2),
and the the fraction of wins (f,) of player B in a match vs. A will be represented by eq. 3.

1
fb#l - 1+ e—ﬂ(Rb—Ra)

(3)

"https://en.wikipedia.org/wiki/Boltzmann_factor

>

stronger player

weaker player

Strength Rating (R)

Figure 2: Rating scale

This equation has the same form as the logistic function®. With this equation we can calculate the
predicted fraction of wins between two players. The predicted performance P,, or number of wins
of player x among a pool of other players will be the summation of each of the predicted fractions
f for each game.

Pe = foom() + Jrom(@) + -+ froppn) = D Fromls (4)
i=1

where n is the total number of games played by x and opp(i) is the opponent it faced in the game
7. Then:

= 1
P =
: ZZ:; 1+ €_B(R’”_ROPP(Z')) (5)

The most likely strength rating values (R) for each player are ones that satisfy that each predicted
performance P, equals the respective observed performance (O,) of player x (actual number of
games won by z). Therefore, the goal is to find R values so the following unfitness (U) score equals
zero, where m is the total number of players, and j is each individual player.

m
U= (P-0y) (6)

j=1
Finding an adequate procedure to minimize U until reaches zero is critical for a proper convergence
towards the optimal solution. The way Ordo fits it is in discrete steps (similar to hill climbing®),
and making those steps smaller and smaller once the convergence was reached. However, those
steps are constrained to certain values to avoid big swings during the calculation. After many

different tests, this procedure was found to be safe and fast.

8http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Hill_climbing

10

Scale

Chess players are accustomed to the Elo rating. Traditionally, it has been based on a normal
(Gaussian) distribution, which is the one that the World Chess Federation (FIDE) still uses!®.
Here, the default value of 8 was chosen to resembles the Elo scale. For that reason, the rating
difference when the winning expectancy is 76% has been set to 202 rating points. This parameter
could be modified with the switch -z, and the overall scale can be displayed with switch -T.

The model is valid if the strength assigned to the individual players is additive like energy. If
we know the strength differences between A—B and B—C, we should be able to calculate A—C
as A—B + B—C. Then, this should accurately predict the results of a match between A and C.
Empirical observations seem to suggests that those estimations are reasonable, at least within a
certain range.

Certain theoretical assumptions have be done to account the existence of draws. One of the is that
the actual draw rate remains similar throughout the rating scale. Empirically, this is a reasonable
approximation for most cases.

White advantage calculation

The rationale to calculate the white advantage (W,q4,) is that the expected outcome for white
should be as close as possible to the actual white performance. In other words, the number of
points obtained by white (1¥,) should be the same as the number of points expected to be obtained
by white (W,).

E=(W,—-W,)? (7)

Therefore, the optimum Wy, is the one that minimizes E, which is the overall error squared in
equation 7.

W, = Z Expectancy(RW; + Wya,, RB;) (8)

i=1

Here, n is the total number of games, RW; and RB; are the ratings (in game 7) of white and black,
respectively. Expectancy is actually equation 3.

We = ; 1+ e—B(Rwlﬁwadu—RBi) (9)
Then, combining 7 and 9
n 1 2
E= (WP - Z; 1+ e—B(RWi—i-Wadv—RBi)) (10)

Onhttp://en.wikipedia.org/wiki/Elo_rating_system

11

Waaw is calculated iteratively, until £ is minimized. This calculation assumes that W,q, is relatively
constant throughout the database. Once W,4, is obtained, the ratings are re-calculated. The
procedure continues until the numbers stabilize.

Draw rate model

To estimate the probability of a draw in a single game the model from Fig. 2 needs to be expanded
to have an extra "draw state" (Fig. 3).

w D L w D L w D L
Rw
)]
£ Rp X Rp
©
x Ry 0 T 5 T
ol orim—me —— D (A B — R (Ry+R/2
=
©
6 X
o
R
Match between equally Match between equally Match between engines
strong engines. strong engines. of different strength
Equally distributed Probability for draws Parameter 6 is maintained
probabilities for Wins, are higher because of and the difference between R,
Losses and Draws (33.3%) parameter & and R, is 2x

Figure 3: Rating scale introducing an extra state for draws

The draw rate does not affect the rating calculation, or the performance for each player in the
simulations. However, it affects the relative distribution of wins, losses, and draws simulated,
which has an influence on the errors calculated. Therefore, to have a more realistic simulation and
an accurate estimation of the errors we need to predict the probability for a draw. But, the draw
rate is not uniform, as it depends on the rating differences between the opponents. Thus, draw
rate depends on two parameters, D,, (draw rate when the two opponents are of equal strength)
and AR. Ordo assumes that D, is relatively constant throughout the database. If we know D,,,
the following equation

M
E = (Dm — Niy Deap(ARp + Wagy, Deg))? (11)

m=1

will give E as the overall error in the estimation of D.,. Here, m is the match number, M is the
total number of matches, IV, is the number of games played in each match m, AR,, is the rating
difference in that particular match, D,, is the number of draws observed, and W4, is the white
advantage. D.,, is a function that gives the draw rate expected given a certain AR and D,,. Note
that here a match is considered any series of games between two opponents with the same colors.
In other words, they are any set of games with the same opponents and conditions. With this

12

equation, D.,, is calculated iteratively until £ is minimized. To apply this algorithm we need the
function D.,,. In the following section we show how to calculate the draw rate when opponents
are of equal strength and later from a given p and D.,. From AR, the performance expected (p)
can be directly calculated.

Draw rate between opponents of equal strength

We can model the draw rate by introducing an extra draw state (Fig. 3). This is a derivation of
the equation that relates draw rate (D) and §.

1=W+D+1L (12)

Here, W, D, and L are the respective win, draw, and loss rates. Since the opponents are of equal
strength, W equals L.

1=2W+D (13)

Based on the assumptions that the probabilities of the different levels are proportional to the
Boltzmann factor'' e PFi the following ratio can be established (R; = —E;, higher ratings mean
lower "energy levels").

= _ T — fBp=Rw) _ B¢ (14)
Replacing into eq. 13
1= ePW 4 2W (15)
1
W= (16)

Combining with eq. 13 we obtained D.,, which is the draw rate when both players are equally
strong. This value depends on 9.

2 ePd

D:Deq:1_666+22666+2

(17)

Draw rate from p (performance) and D,,

Performance (p) is the ratio of the total points obtained by a player in a given number of games.
It is defined by this simple relationship.

p=W+D/2; W=p—D/2 (18)

Uhttps://en.wikipedia.org/wiki/Boltzmann_factor

13

To define D.,, we are going to assume it is constant, regardless of the absolute strength of each
individual. We then have three possible states, W (win), D (draw), and L (loss), in which the
state D is separated by 0 from the average of the levels W and L. In this scenario, and reordering
eq. 17 we have:

o Teq _ 6—55 (19)

For convenience we will call e = ¢ then

e (20)

2D,
D., is the rate when Ry and Rj are at the same level. If Ry and R; change, and 0 remains at
the same distance from the average of Ry and R, the equations that relate the probabilities for
each state are:

Ry — R
Ravg = %7 Tr = RW - Ravg = Ravg - RL (21)
W/D = P79 = fre=5 (22)
D/L = P+ — (B jo=55 (23)

For convenience, if we call e = ¢ as we did before we get

W/D = e’*¢; D/L=¢€"/¢ (24)
therefore
W L ry B ¢*D?

combining this equation with eq. 12 and reordering:

0=W?2+DW — W + ¢*D? (26)
replacing W with eq. 18 we obtain
0=(p—D/2)*+D(p—D/2) — (p— D/2) + ¢’ D* (27)
expanding, simplifying, and reordering leads to
0= (4¢> — 1)D* + 2D + 4(p* — p) (28)
replacing with eq. 20

14

0= ((1;)6‘1)2—1) D*+ 2D + 4(p* — p) (29)

eq

Solving this quadratic equation, we obtain the predicted draw rate (D) between two given op-
ponents, as long as we know the predicted performance (p) and the draw rate between equally
matched opponents (D,,). This is used to plug it in eq. 11.

Draw rate and win rate relationship
Reordering eq. 26 we obtain

D?*=¢*W(1—-W —D) (30)

Note that this relationship is equivalent to the basic assumption used by Davidson'? to develop
his draw model

D=vVWL (31)

Here, v = ¢=? and L = 1 — W — D. Shawul and Coulom showed that this relationship is superior
for chess engines when compared to other alternatives!3. Replacing ¢ in eq. 30 with eq. 20 we
obtain

D? = (12_D1“’)‘16q)2 W(l—-W — D) (32)

Equation 32 is the one used by Ordo to obtain the draw rate for any pair of opponents as a function

of win probability (W) and draw rate for equal opponents (D,).

Draw rate calculation

The rationale to calculate the draw rate for equal opponents (D,,) is that the expected outcome
of number of draws showuld be as close as possible to the actual number of draws in the database.
In other words, the number of draws observed (D,s) should be the same as the number of draws
expected (Degp).

E = (Dobs - De:cp)2 (33)

Therefore, the optimum D,, is the one that minimizes £/, which is the overall error squared in
equation 33.

Dewp = i Dz (34)
i=1

12Equation 2.5 in http://stat.fsu.edu/techreports/M169.pdf
3https://dl.dropboxusercontent.com/u/55295461/elopapers/elopapers/ChessOutcomes . pdf

15

Here, n is the total number of games, and D; is the probability of a draw for game 7. From equation
29, D; could be solved as

1—Deq
o Tit V1 =402 = p) (4552 - 1)

Doy
4(gpre)? — 1

(35)

where p; is the expected performance for white for each game, and could be calculated from
equation 3 as

1
P T e~ A(RW A+ Woa,—RB;)

(36)

RW,; and RB; are the ratings (in game 7) of white and black, respectively. Once D, is estimated,
p; and D; are calculated (equations 35 and 36) for each game to obtain D.,, and E (equations 33
and 34). Optimum value of D,, is the one that minimizes E and it is calculated iteratively. This
calculation assumes that D, is relatively constant throughout the database. Once D, is obtained,
the ratings are re-calculated as it is done with W,4,. The procedure continues until the numbers
stabilize.

Rating calculation with prior information

When user provides Ordo with either loose anchors, relative anchors, white advantage uncertainty,
or a draw rate uncertainty the calculation is performed by a mazimum-likelihood estimation. In
those cases, for each game the probability for the given outcome (W, D, or L) is calculated and
the logarithm of this value is added and accumulated. This will constitute an unfitness score
that will need to be minimized. In addition, to this score, the logarithm of the probabilities for
each loose anchor, relative anchor, white advantage, and draw rate are accumulated. An overall
minimization brings optimum values for the ratings of each player and each of the above mentioned
parameters. Note that adding the logarithm of each of the probabilities is analogous to multiplying
the probabilities.

Forcing maximum likelihood
Another option to force Ordo to perform a mazimum-likelihood estimation to calculate the ratings
is by providing the switch -M. This option is generally a bit slower and probably not necessary

since the output should be nearly identical with perfect convergence, but it is a good feature for
comparison an debugging.

Acknowledgments

Adam Hair has extensively tested and suggested valuable ideas.

License

ordo v1.0

16

Copyright (c) 2015 Miguel A. Ballicora
Ordo is program for calculating ratings of engine or chess players

Ordo is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Ordo is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Ordo. If not, see <http://www.gnu.org/licenses/>.

17

